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 A-1 

Kirchhoff plate theory and FE 
 
Rigid pavement can be idealized using Kirchhoff theory, which is applicable to thin plates (Cook 
et al, 1989; Reddy, 1993).  In other words, since rigid pavement thickness is very lesser than 
other two dimensions, transverse shear deformation is insignificant and can be neglected.  With 
this important statement, all stress-strain relations that involved transverse shear deformation are 
vanished and what remains is the plane stress-strain relation that is shown below in form of 
matrices (for an isotropic material). 
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 When  α  = coefficient of thermal expansion of concrete 
  µ  = Poisson’s ratio of concrete 
  T  = temperature differential between top and bottom of concrete 
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Based on stress-strain relations as written in matrix form above, stiffness matrix of concrete slab 
[Kp] may be derived using the following formula. 
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   When [B]  = strain-displacement matrix (will be discussed later) 
    A  = area boundary of an element 
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    D  = flexural rigidity 
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     When t  = slab thickness 
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Winkler foundation and FE 
 
Theoretically, rigid pavement, which is actually a slab on grade, can be approximately 
considered as one elastic structure supported by a foundation model called Winkler foundation.  
There are a great many other foundation models available for rigid pavement foundation 
idealization; however, Winkler foundation is traditionally used and considered as the most 
effective model.  Details of characteristics, advantages, and disadvantages of Winkler foundation 
will not be discussed at this time.  Another name of Winkler foundation is “Dense Liquid” 
foundation because this foundation simulates the behavior of subgrade or original soil under 
concrete slab by providing a vertical resistant pressure equal to βw when w is vertical deflection 
and β is the Winkler foundation modulus (modulus of subgrade reaction).  Stiffness matrix of 
foundation is written below in matrix form. 

dANNK
A

T
f � ⋅⋅= ][][][ β       (A-18) 

 
   When [N]   = interpolation functions matrix (will be discussed later) 
    A   = area boundary of an element 

Discretization into FE and interpolation functions 
 
Since rigid pavement has rectangular geometry, the pavement can be discretized using 
rectangular linear FE with three degrees of freedom at each node: one vertical displacement, and 
two horizontal rotations as shown in FigureA-8.  In other words, one FE contains twelve degrees 
of freedom and this means each element has 12x12 stiffness matrix and 12x1 force vector and 
12x1 displacement vector. 

 
Figure A-8: Twelve-d.o.f. rectangular Kirchhoff plate element with typical d.o.f. shown at node 3 

 
Since Kirchhoff plate elements provide interelement continuity of vertical displacements and 
rotations in x and y directions, the elements can be considered C1 elements; therefore, 
interpolation functions for C0 elements like Lagrange’s interpolation formula may not be applied.  
Hermitian interpolation function, one of interpolation functions C1 elements, can be used for this 
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situation (thin plate elements).  For an element that has four nodes: 1, 2, 3, and 4, Hermitian 
interpolation functions can be derived using following formulae. 
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When 
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Now the interpolation functions can be written in matrix form 1x12 as shown below. 
 
  ][][ 444333222111 yxyxyxyx NNNNNNNNNNNNN =  (A-22) 

 
Strain-displacement matrix [B] can also be written in matrix form 3x12 as shown below. 
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FE of one element 

From previous part, stiffness matrix of each element [Ke] (12x12) can be derived as shown 
below. 

  { } { } { }effpp ruKuK =⋅+⋅ ][][       (A-24-1) 
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 but { } { } { }efp uuu ==        (A-24-2) 

 
  { } { }eee ruK =⋅][        (A-24-3) 

 
  ][][][ fpe KKK +=        (A-24-4) 

 
   When {up}   = slab displacement vector 
    {uf}   = foundation displacement vector 
    {ue}   = element displacement vector (12x1) 
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    {re}  = element force vector (12x1) 
 

    � ⋅⋅=
A oK

T
e dADBr }{][][}{ κ     (A-26) 

 

     When  
T

o t

T

t

T
��

�
��

� ⋅⋅= 0}{
αακ   (A-27) 

 

Global system 
 
Global stiffness matrix and force matrix can be computed based on element stiffness matrix and 
element force matrix.  The concept of generating element stiffness matrix and element force 
vector into global stiffness matrix and global force vector is exactly the same as the concept of 
using Boolean matrix that is applicable for C0 elements but the method is slightly different.  This 
is because each node of a Kirchhoff element has 3 degrees of freedom.  This means the element 
stiffness matrix, which is actually 12x12, can be considered as 4x4 and the element force vector, 
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which is actually 12x1, can be considered 4x1 in order to generate them into global system as 
shown below. 
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Once global stiffness matrix and global force vector are derived, displacement vector of global 
system can be computed. 
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   When {U}   = global displacement vector 
    [KG]   = global stiffness matrix 
    {F}   = global force vector 
    N   = number of nodes in global system 
 




